Determination of the crystal basement of some gravity anomalies in Mekong delta area by using the forced neural network
Determination of the crystal basement of some gravity anomalies in Mekong delta area by using the forced neural network
Son, N. N. T., Hai, N. H., Toan, L. P, & Liet, D. V.
Proceedings of the International Scientific Conference “Geophysics – Cooperation and Sustainable Development
First published: 14 December 2012
https://
Cite (APA):
Corresponding author Dang Van Liet,University of Science, Vietnam National University, Vietnam.
Email: dangvanliet@gmail.com
Son, N. N. T., Hai, N. H., Toan, L. P, & Liet, D. V. contributed equally to this work
Abstract
The inverse gravity problem - especially to determine the crystal basement -does not an unique solution so there are many methods to solve it. There is two parts in this paper (a) writing a program to determine the crystal basement from the gravity data using the forced neural network method and (b) applied it to interpret some gravity anomalies in Mekong delta area. The results showed that the program is easy to use and the maximing depth of the crystal basement of Mekong delta area varies from 0.6 km to 1.6 km and these results are suitable with the previous ones.
Fulltext:
Request full-text
References
Van Liet, D. (2005). Determination of the crystal-basement from gravity data using genetic algorithms. Science and Technology Development Journal, 8(12), 21-26.
Liệt, Đ. V., Thiện, Ô. D., Lành, P. V., Thuần, P. N., & Chinh, N. V. (2009). Áp dụng thuật toán tiến hoá cải tiến để giải bài toán ngược trọng lực. Vietnam journal of earth sciences, 31(4), 397-402.
Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge university press.
Last, B. J., & Kubik, K. (1983). Compact gravity inversion. Geophysics, 48(6), 713-721.
Krahenbuhl, R. A., & Li, Y. (2002). Gravity inversion using a binary formulation. In SEG Technical Program Expanded Abstracts 2002 (pp. 755-758). Society of Exploration Geophysicists.
Osman, O., Albora, A. M., & Ucan, O. N. (2007). Forward modeling with forced neural networks for gravity anomaly profıle. Mathematical Geology, 39(6), 593-605.